硕士生李鑫苒在国际纳米权威期刊Nano Research上发表论文

2024-03-18 12:00:06 68

课题组硕士生李鑫苒同学在国际纳米权威期刊Nano Research上发表论文

       近日,课题组硕士生李鑫苒同学在刘老师的指导下,以第一作者在国际纳米权威期刊《纳米研究》(Nano Research,影响因子10. 269)上发表题为Observation of Robust Anisotropy in WS2/BP Heterostructures”(WS2/BP异质结中强健的平面光学极化特性)的实验论文。

图片关键词

图:WS2/BP异质结中强健的平面光学极化特性

     近年来,二维各向异性材料的探索在科学研究者中引起了广泛关注,主要是由于它们显著的平面各向异性,表现为角度相关的光学和电学特性。在众多受到研究的各向异性材料中,黑磷(BP)表现突出。BP以其高载流子迁移率和可调谐的直接带隙而闻名,其呈现出具有C2旋转对称性的扭曲蜂窝结构,赋予其强烈的平面各向异性。事实上,BP代表了二维材料领域中最广泛研究的各向异性材料之一。相反,诸如MoS2、WS2、MoSe2和WSe2等具有C3旋转对称性的材料,表现出明显的平面各向同性。最近的研究揭示了将具有C3旋转对称性的各向同性材料与具有C2旋转对称性的各向异性材料相邻,可以在它们的界面处引发各向异性moire势。这种现象有效地破坏了单层各向同性材料的对称性,导致了随后异质结中各向异性的出现。值得注意的是,与它们的各向同性对应物相比,这些低对称度的各向异性材料和异质结具有显著的光电特性,为设计和调控高性能光电纳米器件提供了有前景的途径。

     在本研究中,我们采用了一种新颖的方法,通过干法转移技术将具有C3旋转对称性的WS2与具有C2旋转对称性的BP层层堆叠,制备了异质结。所得到的异质结表现出了强健的平面光学极化特性。通过对光致发光(PL)谱的详细研究,我们调查了在不同磁场和温度下WS2/BP异质结的PL极化特性。有趣的是,我们观察到WS2/BP异质结在不同条件下各向异性特性的差异变化。这一引人注目的现象可以归因于各向同性/各向异性异质结结构之间的相互作用耦合,其在异质界面诱导了单轴应变,从而破坏了各向同性材料WS2的晶格对称性。此外,这种单轴应变对磁场和温度的变化具有敏感性。因此,我们的研究为探索和开发多功能各向异性光电器件提供了一条新途径。

论文链接:

Comments:

The paper "Observation of Robust Anisotropy in WS2/BP Heterostructures" presents a significant advancement in the field of anisotropic optoelectronic devices by exploring the unique properties of two-dimensional (2D) anisotropic materials. The study focuses on heterojunction interface engineering using black phosphorus (BP) to disrupt the C3 rotational symmetry of monolayer WS2, resulting in pronounced anisotropy in exciton emissions.

The findings reveal a measured anisotropic ratio of 1.84 for neutral excitons in the WS2/BP heterostructure, indicating a substantial enhancement in anisotropic behavior. Moreover, through a thorough analysis of photoluminescence spectra under varying magnetic fields and temperatures, the study uncovers dynamic trends in the polarization ratio, particularly observing a remarkable anisotropy ratio of 1.94 at specific conditions.

This observed dynamic behavior is attributed to the susceptibility of the WS2/BP heterostructure interface strain to fluctuations in magnetic fields and temperatures. These insights offer valuable implications for the design of anisotropic optoelectronic devices capable of adapting to diverse environmental conditions, thereby pushing the boundaries of material-driven device engineering.

Overall, the paper provides essential groundwork for further research into the development of versatile and adaptable anisotropic optoelectronic devices, contributing significantly to the advancement of the field.